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4.1 INTRODUCTION: THE DISCOVERY OF
MICROORGANISMS IN SOLAR SALTERNS

Sodium chloride, a necessity for the chemical, food, and deicing industries, histor-
ically has been obtained by three methods, depending on the location of the salt
producers: 1) the boiling of brine from springs at inland locations, 2) mining or
quarrying of rock salt (as was common in India in pre-Roman times [Pliny, trans.
1963] and in Austria in prehistoric times [Gouletquer, 1974]), and is still practiced
today; and 3) solar evaporation, especially along the sea coasts or at inland hyper-
saline lakes. Undoubtedly the first solar salt production and collection came from
sea- or brine-spring sprays that dried on nearby rocks or twigs; this later gave way
either to boiling the brine or using single pans for solar evaporation of the water.
These operations probably provided sufficient salt for a single family or small tribe
or clan.

As commerce developed, it was recognized, possibly first by the Chinese
(Forbes, 1968), that multiple pans containing increasing concentrations in the salt
content resulted in purer salt. This salt was whiter and sweeter, and we now know
that the improvement in taste resulted from the precipitation in the concentrators of
the gypsum, iron, and other inorganic impurities prior to the precipitation of sodium

0-8493-8363-3/99/$0.00+$.50
© 1999 by CRC Press LLC 39
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meters

SCALE

FIGURE 4.1 Plan of the Bonaire, Netherlands Antilles solar salt plant showing the direc-
tions for water flow. The concentrators have Arabic numbers and the crystallizers are desig-
nated by a letter and number. All samples were obtained at the outlet gates for the pans.

chloride. A typical solar salt plant (also called a saltern or saline), with its increasing
salt concentrations, is shown in Figure 4.1. This type of system uses seawater and
is called a thalassohaline system, while inland brine springs frequently have a
different chemical composition from seawater and are athalassohaline waters.

Because microorganisms had not been discovered, none of the early salt-pro-
duction methods reported their presence. The recognition of bacteria did not occur
until 1683 with van Leeuwenhoek’s description in his letter to the Royal Society
(1684). By the latter part of the 19th century, however, microorganisms were gen-
erally recognized as playing important roles in both health and the environment.
During the voyage of the Beagle in 1826, Darwin described the production of solar
salt in an inland lake 23 km from El Carmen, Patagonia (Darwin, 1901). Although
unfamiliar with bacteria, Darwin recognized that there was a “putrefying life-form”
in the mud; that algae caused a green color on the lake; that flamingoes fed on the
brine shrimp and worms; and that other “infusorial animalcula” were part of the
salt-producing system.
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However, his notations made little impact on the general impression that salterns
were essentially sterile environments. Many visual observations of solar evaporation
pans showed that fish could not live in them, and therefore it was assumed that
nothing could survive in solar salterns. This view persisted despite mounting evi-
dence that there were microorganisms in the solar salt pans. Payen in the mid-19th
century had shown that Artemia did indeed survive, grow, and reproduce in brines
(Payen, 1837). Even with the discovery of Dunaliella salina (Teodoresco, 1905)
there was still considerable questioning about the existence of other microscopic
life in salterns. This dispute was finally settled after Pierce (1914), Kellerman and
Smith (1916), Brown (1922), and Clayton and Gibbs (1927) all successfully cultured
bacteria from brines as well as the solar-produced salt. These investigators performed
the first microbial ecology studies of solar salt works by simply showing that bacteria
did indeed live in these “sterile” environments.

Since then, there has been a continuing interest in the halophilic bacteria, their
metabolism, structure, taxonomy, and survival mechanisms. However, there have
been comparatively few studies on the ecology of the microorganisms in solar
salterns. This chapter will review some of these studies, present some current work,
and describe several factors affecting the microbial population that seem to be
common regardless of the geography of the solar salt plant.

4.2 REVIEW OF PUBLISHED MICROBIAL
ECOLOGICAL STUDIES OF SOLAR SALT PLANTS

Although solar salterns have been in existence since prehistoric times, the micro-
bial ecology of these operations has never been extensively studied, probably
because it has been assumed by the general microbiological community that these
hypersaline environments are highly selective and not much of microbiological
interest is happening in them. The few investigators who have examined solar
salterns would disagree. This section will discuss the studies conducted at salines
in Spain, the Exportadora de Sal saline in Mexico, and the Western Salt Company
in southern California.

4.2.1 SoLAR SALTERNS IN SPAIN

Solar salt is produced in Spain not only by the evaporation of seawater along the
coast but also by the evaporation of athalassohaline waters from natural inland brine
springs. These springs typically contain about 15-20% total salt solutions and
normally have higher levels of magnesium, calcium, and potassium than are found
in seawater (Ramos-Cormenzana, 1993). Bacterial enumerations from the saltern of
La Mald near Granada, Spain were reported to be dependent on the salt content of
the isolation medium (Del Moral et al., 1987). Six sites were sampled and the waters
were plated on media with the same composition but at four different salt concen-
trations (3, 10, 18, and 25% w/v total salt). Because the source water was 18%, the
salt concentrations in each pan were relatively constant. Thus, this was not a grad-
uated solar salt plant as seen on the coast. However, even with this higher salt
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concentration, both eubacteria and halophilic archaea were found in all of the pans
regardless of the salinity of the medium (Ramos-Cormenzana, 1993).

Meanwhile, a coastal saltern 22 km south of Alicante, Spain has been the subject
of several studies by Rodriguez-Valera and coworkers. These investigators scored
the colony growths according to the pigmentation of the cells and used this as an
indicator of Bacteria vs. Archaea. They found nonpigmented organisms were more
common in ponds containing up to 6-14% salt, while the red-pigmented colonies
appeared at about 18% salt, peaked at about 27-30% NaCl and were barely present
at 34.3% NaCl. In all cases, the total colony-forming units (TCFU) were substantially
lower at the higher salt concentrations. The nonpigmented strains grew in 2-10%
salt while the pigmented strains required 20% salt or higher at 38°C (Rodriguez-
Valera et al., 1981). They examined 384 nonred-pigmented colonies and found they
were generally halotolerant and the predominant genera were Vibrio, Flavobacte-
rium, Alcaligenes, Alteromonas, and Chromobacterium (Ventosa et al., 1982).

In a later paper on the Alicante saltern, Rodriguez-Valera and co-workers
reported the physical/chemical characteristics of various pans where microbiological
samples had been taken. The data (Table 4.1) show higher concentrations of nitrogen
and phosphate at the lower salt concentrations than had been reported by Javor
(1983) (see below). However, the numbers of culturable bacteria do not appear to
be much higher (Rodriguez-Valera et al., 1981).

TABLE 4.1
Inorganic Nutrient Concentrations at Selected Solar Salterns

Percent NaCl in the Saltern Pans
Location 5-6% 12-13% 15-17% 20-21% 22-25% 27-30% 32-34% Source

Ammonia (mg 1!)

ESSA <0.2 <0.2 <0.2 <0.2 <0.2 0.2 1.0 Javor, 1995
WSC 0.2 0 0 0 0.4 <0.2 0.5 Javor, 1995
Alicante* <1 3 3 6.5 —b 6 8 Rodriguez-Valera
et al,, 1985
Bonaire 0.45 0.3 0.2 0.45 0.26 — 0.67  This paper
Nitrate (mg 1-!)
ESSA 0 0 0 0 1.1 22 3.8 Javor, 1985
WSC 42 0 0 0 0 1.98 2.09  Javor, 1985
Alicante — — — — — — .
Bonaire 0.19 0.24 0.05 0.18 0.16 — 0.54  This paper
Phosphate (mg 1)
ESSA 0 0 0 0 0.16 0.4 1.59  Javor, 1985
WSC 40.71 0 0 0 0 0.32 0.32  Javor, 1985
Alicante  0.75 0.1 0.12 0.12 — 0.12 0.25 Rodriguez-Valera
et al., 1985
Bonaire 0.02 0.04 0.04 0.06 0.04 — 0.05 This paper

a Kjeldahl nitrogen values were used for Alicante ammonia concentrations.
b Values not reported or not tested.
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A frequent question concerns the source of the red Archaea in these solar salt
plants. Are the red bacteria indigenous, induced or mutated halotolerant strains,
or introduced from some unusual source? To answer this question, Rodriguez-
Valera et al. (1979) isolated several strains of Archaea from seawater, but all
belonged to the genus Halococcus. They did not find any pleomorphic, Gram-
negative rods that they could identify as Archaea, though, so the question is still
only partially answered.

Another saltern in Spain was investigated by Marquez et al. (1987). This saltern
was on the Atlantic Ocean instead of the Mediterranean Sea, and the authors
compared the types of isolates obtained from Huelva saltern with those from
Alicante. Their isolates were grouped according to the salt requirements and
included 154 out of the total 564 that could be classified as Gram-positive isolates.
The Alicante studies had also shown a large proportion of nonhalophilic Gram-
positive organisms (Rodriguez-Valera et al., 1981). Vibrios were again the pre-
dominant type in the Huelva saltern, but at about one-half the TCFU found in
seawater, indicating some degree of selectivity in this saltern system. They also
identified 145 halophilic Archaea with Halobacterium salinarum composing 59%
of the archaeal isolates (Marquez et al., 1987). Unfortunately, since the authors
did not report any of the physical/chemical characteristics of this saltern, the
microbial numbers and the nutrient levels cannot be compared to see what effect
these might have had on the bacterial distributions.

4.2.2 WEesTERN HemisPHERE: MEXICO AND SOUTHERN CALIFORNIA

A major salt-producing saline in Mexico, the Exportadora de Sal (ESSA), has been
the subject of several microbial ecological studies by Javor. After measuring the
major ions in the saline, Javor correlated the changing ionic compositions with the
various types of microorganisms detected in the liquid phase at two different salines,
ESSA and the Western Salt Company near San Diego, CA. She noted that the Western
Salt saline had unidentified bacteria and various algae starting at 613 °Bé (4-14%
NaCl), while the Exportadora de Sal waters were dominated by algae, cyanobacteria,
brine shrimp, and insect larvae until about 20-30 °Bé (22-35% NaCl). In the latter
case of the ESSA, however, the TCFU were much less dense. At the higher salt
concentrations, the halophilic bacteria became the exclusive microorganisms in the
ESSA saline, but Western Salt continued to have both the halophilic bacteria and
Dunaliella in the high brine waters (Javor 1983, 1985).

More importantly, Javor also measured the inorganic nutrient concentrations
of these waters and found that the Western Salt brines had higher levels of nitrate,
reactive phosphate, and ammonium ions (Table 4.1), which she correlated with
the concentration of biomass each saltern supported. In general there was little
fluctuation in the concentration of the phosphate and nitrate, which were uniformly
low, while the ammonia concentrations showed some variability; the concentra-
tions of all three nutrients increased dramatically in the more saturated brines at
ESSA (Javor, 1985).
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4.3 MICROBIAL ECOLOGY OF THE BONAIRE,
NETHERLANDS ANTILLES SALTERN

Over a four-year period, an extensive seasonal investigation was conducted of the
factors affecting the distribution of microorganisms in a solar salt facility located in
Bonaire, Netherlands Antilles (Figure 4.1) (Litchfield, 1977; Vreeland, 1976). Sam-
ples were collected from the inlet, through the various concentrators, and the final
crystallizers. Besides plate counts of the microorganisms that would grow on dif-
ferent nutrient media prepared with different amounts of solar salt (3.5, 10, and
25%), nutrient chemistries were also determined: urea, ammonia, phosphate,
nitrate/nitrite, and oxygen along with the temperature, pH, and density of the pans.
During the latter two years of the study, the numbers of culturable photosynthetic
organisms were also determined.

The results of these cultivations are shown in Figure 4.2, where the averages for
the plate counts for the three major ecological zones have been plotted. Both total
heterotrophic colony-forming units (TCFU) and the red-pigmented colonies
(TPCFU) are shown. The ESWA/10 medium is the reduced nutrient medium of
Litchfield et al. (1974), and HSC is the high-salt casein medium of Vreeland et al.
(1980). All samples were surface-spread plated onto the media in quintuplicate and
incubated for up to 21 days at 30°C. Dilutions were made in either artificial seawater,
10% solar salt, or 25% solar salt, as appropriate.

In general, the TCFU on 1/10 ESWA ranged from 10° to 107 per liter. There
were no discernible seasonal fluctuations. The numbers of TPCFU followed the same
pattern as the TCFU. On the ESWA medium containing 10% solar salt, there was
inconsistent growth until concentrator 4, where the density ranged between 1.039-
1.045 (5-7% salt). The maximum numbers to grow on this medium were found in
concentrators 8 to 10 (13-18% salt) with decreases as the waters approached satu-
ration with respect to NaCl. This resulted in a bell-shaped curve for the CFUs on
this medium (data not shown). Growth on the HSC medium was always less,
especially in the lower concentrators. However, red-pigmented organisms were con-
sistently found only from concentrator 8 onward and were the dominant type of
organism in the crystallizers. The high increase in concentrators 6, 7, 9, and 10
during the August sampling was likely due to nutrient enrichment that resulted from
flooding the flamingo sanctuary located in the center of concentrator 6.

Because there was no apparent seasonal influence on the bacterial distribution, the
nutrient data were examined to determine if there were any seasonal effects on their
concentrations. The product moment correlation coefficients for the data pairs were
calculated (Barr and Goodnight, 1972). The chemical and culture data were analyzed
in three ways. First, all of the samples were analyzed in a single matrix to determine
if one factor might be common to all of the samples; second, the entire facility was
divided into five arbitrary zones based on density; and third, each individual concen-
trator was analyzed to see if different factors impacted each concentrator.

The only overall significant correlation within the entire saltern involved nitrogen
and ammonia (0.992, p = 0.0001) indicating that ammonia is a major contributor to
the nitrogen in the system. Statistical analyses of the combined microbiological and
chemical data resulted in the recognition of three distinct ecological zones. The first
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FIGURE 4.2 Averages for the plate counts for the three major ecological zones at the
Bonaire solar salt plant. Each sample was plated in quintuplicate and the CFU for that sample
averaged. All samples within the density range of the individual zones have been totaled and
averaged for this figure.

is composed of pans containing salt densities from 1.026 (inlet) (3.5% salt) through
1.045 (7% or concentrator 9). This is the most diverse zone, not only in terms of
bacteria, but also higher organisms. Bacterial fluxes here correlated with the amount
of nitrogen (ammonia and urea) at p = 0.0005, and there was no correlation with
phosphate, which was frequently not detectable in these waters.
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The second zone consisted of density areas from 1.045 through 1.190 (7-25%
salt) — all of the remaining concentrators until the crystallizers. The dominant
organisms were those capable of growth on 10% solar salts media with bacteria able
to grow on 25% salt media also routinely encountered, but they were not the
dominant forms even in the higher salt concentrations. At the lower end of this zone,
nitrite levels could be correlated (at p = 0.001) with the total colony-forming units,
and as the salt concentration increased, this became the determining factor in the
numbers of culturable bacteria.

The final ecological zone consisted of the crystallizers. There, red and green
photosynthetic organisms were occasionally isolated, but the entire community
was dominated by the red halophilic and nonpigmented halotolerant bacteria. Both
oxygen and phosphate were the most limiting nutrients, being frequently nonde-
tectable, while nitrogen levels remained fairly constant. Despite seasonal temper-
ature and rainfall changes, neither of these was a factor in the microbial ecology,
except for the one year with unusual rainfall that resulted in crystallizer densities
falling below 1.2.

In all of these studies (Spain, Mexico, United States), nitrogen appears to be
highly correlated with the bacterial populations throughout the saltern. Also, oxygen
and phosphate are the limiting factors since these are frequently nondetectable.

A model food web for this facility has been developed and is shown in Figure
4.3. All components listed in the figure are active in the first ecological zone (inlet
to 7% NaCl); organisms listed below line A are active in the second ecological zone
(approximately 8-25% NaCl); while only those listed below line B are active in the
third zone (crystallizers) (Vreeland, 1976).

)
Large Fish
1-1
Zooplankton Small Fish
>R
Algae Shrimp Flamingos
L & e sz e
B ~ B
S

Heterotrophic Microorganisms

P S A S
Sediment

FIGURE 4.3 Theoretical food web for the three ecological zones at the Bonaire salt plant.
The entire figure is active in Zone 1; those below line A are active in Zone 2; Zone 3 includes

those organisms listed below line B.
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FIGURE 4.4 Similarity matrix for 35 halophilic bacteria. Taxon I contains the genus
Halomonas, while the Archaea are grouped under Taxon IL Strains 541, 542, and 543 are
Halobacterium cutirubrum (salinarum), Halobacterium salinarum, and Halococcus mor-

rhuae, respectively.

Forty-seven bacterial strains were isolated, purified, and tested using standard
microbiological procedures. The resulting data were analyzed using numerical tax-
onomy, with the results shown in Figure 4.4 (Colwell et al., 1979). By single-linkage
Jaccard analysis, two major taxa were found. The first comprises the isolates later
identified as the genus Halomonas (Vreeland et al., 1980). The second major taxon
was actually composed of six subsets that included known isolates of the halophilic
Archaea. From this study, the interrelationship of salt and temperature on the growth
ranges of the genus Halobacterium was also noted (Colwell et al., 1979).

4.4 PRELIMINARY STUDIES ON THE MICROBIAL
ECOLOGY OF THE CARGILL SOLAR SALT PLANT,
NEWARK, CA

Current studies at the Cargill Solar Salt Plant in Newark, CA are designed to
determine the similarity of the microbial flora of a more northerly saline to the
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FIGURE 4.5 Averages of the plate counts on MCA medium taken over a three-year period
at the Cargill Solar Salt Plant, Newark, CA. Each brine sample was plated in duplicate, and
the plates incubated at room temperature, which approximates the in situ temperature.

microbial populations in salterns in southern California, the Caribbean, Mediterra-
nean, and Israel. Three sets of samples have been obtained to date, and the resulting
plate counts are shown in Figures 4.5 and 4.6. The Modified Casamino Acid (MCA)
medium is similar to the HSC used in Bonaire, so the numbers of bacteria should
be comparable. Indeed, except for the direct effects of rainfall on the Cargill TCFU
(Figure 4.5), the microbial counts are similar to those from Bonaire (Figure 4.3).

A comparison of the results plotted in Figures 4.5 and 4.6 show that the culture
medium makes a significant difference in the numbers of viable culturable bacteria
recovered. The MR2A medium, which contains low levels of pyruvate, starch,
glucose, and proteose peptone and was modified by supplemental magnesium
sulfate, supported either about the same or an order of magnitude higher numbers
than the low yeast extract MCA, even in the crystallizers. The numbers of pig-
mented colonies were also higher on the MR2A medium, indicating that the
bacteria cultured on this medium have a broader range of metabolic capabilities
than is normally considered.

Another factor to be taken into account in evaluating these data is that the
northern California area had been under drought conditions for several years, and
the drought broke following sample collection at the end of 1993. This resulted in
a lowering of the total salt concentrations in the pans, which is reflected in the
decreases in numbers during 1995 and February 1997. For example, viable bacterial
numbers decreased from 7°107 ml-! in 1993 in the concentrator containing 12-15%
salt to <100 ml-! in the same concentrator in 1995. In general, the TCFU ml-! are
comparable to the standing crops of bacteria noted for the Spanish salines.

In an effort to gain a better understanding of the nutritional needs and metabolic
diversity of the whole microbial community, samples were placed in BIOLOG™
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FIGURE 4.6 Averages of the plate counts on MR2A medium taken over a three-year period
at the Cargill plant. Each brine sample was plated in duplicate, and the plates incubated at
room temperature, which approximates the in situ temperature.

GN plates. These plates contain 95 separate substrates. Incubation of the water
samples in the plates resulted in metabolic patterns that demonstrated that 69% of
the samples could use those compounds listed as positive in Table 4.2. In 69-88%
of the samples, the microbial community was unable to use those compounds listed
as negative in Table 4.2. Interestingly, glycerol, found by Oren (1993) to be so
important to the Dead Sea bacteria, is not generally used by the populations in this
saltern; amino acids appear to be the most common class of organic nutrients
generally consumed by the microbial community.

TABLE 4.2
Summary of the Carbon Compounds Most Used (>67 %) and Those Generally

Not Consumed (>67%) by the Whole Community in the Cargill Solar Salt
Plant

Generally used carbon sources Generally not used carbon sources

o-cyclodextrin D-glucuronic acid B-methyl-D-glucose  succinamic acid

dextrin propionic acid D-psicose L-leucine

glycogen quinic acid itaconic acid D,L-carnitine
N-acetylglucosamine L-alanine a-ketovaleric acid phenethylamine

D-fructose L-asparagine a-ketobutyric acid 2-aminoethanol

D-glucose L-glutamic acid glucuronamide D,L-o.-glycerolphosphate
sucrose L-phenylalanine alaninamide p-hydroxyphenylacetic acid
citric acid L-pyroglutamic acid
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4.5 CONCLUSION

As more data on the complexity of solar salterns are obtained, a few patterns begin
to emerge. Although salt is made in salt lakes, there are distinct differences in the
microbial ecology between solar salterns and hypersaline lake systems. Temperature
and rainfall do not appear to be deciding factors in the distributions of microorgan-
isms in salines, but are important in salt lakes such as the Dead Sea (Oren, 1988;
Oren and Gurevich, 1993) and the Great Salt Lake (Post, 1977; Rushforth and Felix,
1982). Nutrient chemistries, especially the lack of phosphate, are more significant
determinators of microbial populations for salines, where the gradual increase in
salinity results in the precipitation of gypsum, and the bacteria and algae appear to
compete for the scarce phosphate ions, especially in the higher-density concentrators
and crystallizers.

Bacteria are found throughout the saltern system, while they seem to play a
rather insignificant role in salt lakes. Conversely, halophilic Archaea do not appear
to be limited to just 12—-15% salt concentrations, but have been recovered from inlet
and 4-6% salinity waters in Bonaire, at Cargill (data not presented), and in the
Mediterranean Sea (Rodriguez-Valera et al., 1979).

As the seasonality in salterns is investigated, it becomes obvious that the salt
concentrations are not constant in the different pans. There may be a 5-8% variation
(Bonaire data, not shown, and Javor, 1983) so it should not be surprising that many
of the bacteria demonstrate broad salinity tolerance. This adaptability may account
for the widespread distributions of both halophilic Archaea and halotolerant Bacteria
throughout the salt plant. This would explain the greater degree of microbial diversity
in solar salterns than has been generally expected.

These studies have barely begun to clarify the complexities of solar salterns.
Future studies will include the application of molecular techniques such as 16S
rRNA and DNA fingerprinting to evaluate those microbes that have not been cul-
tured. A few preliminary attempts have been initiated in this area (Martinez-Murcia
et al., 1995), but these have not been long-term studies that could show fluxes in
the microbial populations. Other approaches include the examination of the whole
community lipid patterns and correlation of these data with predominant culture
isolations (Oren and Gurevich, 1993). However, polar lipid patterns and pigments
of bacteria are modified during cultivation, so it is difficult to make such direct
comparisons. However, examination of whole community patterns do show changes
with time, and this may reflect shifts in the types of dominant microbes (Litchfield
et al., unpublished results).

In addition, examination of the importance of bacteriophages and halocins to
control of the populations will also be important in understanding not only distri-
butions but concentrations of bacteria in different-density ponds. Finally, further
work on the nutrient chemistries and the identity of community properties, as well
as the individual microbial isolates, will help us to understand the microbial popu-
lation fluxes in these very dynamic systems.
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